Kadim Dostlar ™ Forum: [Matematik] Olasılık Teorisi - Temel Kavramlar - Kadim Dostlar ™ Forum

İçeriğe atla

Yalnızca 1 dakikanızı ayırıp sitemize üye olduğunuzda, içinde daha az reklam bulunan temamızı kullanabilirsiniz ...

Aradığınız konuya ulaşamadınız mı ? Problem değil, arama Özelliğimizi Kullanabilirsiniz
GoogleKadim Dostlar Özel Arama
Facebook Sayfamıza Üye Olabilir ve Güncel Site İçeriğinden Kolayca Haberdar olabilirsiniz
Sitemize reklam vererek, sitelerinizi veya ürünlerinizi tanıtabilirsiniz
-------------------
Kurumsal Çözümler Uzmanı Erkan Okur
İnformatik: Mühendislik ve PLM Çözümleri



Endüstri Mühendisliği Nedir ?

Endüstri mühendisliği,  insan, bilgi, malzeme, ekipman ve süreçlerin kullanılması,  geliştirilmesi ve yönetimi ile ilgili mühendislik dalı. Endüstri  mühendisleri; zaman, para, malzeme, enerji gibi kaynakların verimli  kullanımına ve mühendislik hizmetlerinin kalitesini artırmaya yönelik  çalışmalarda bulunur.
  
Endüstri mühendisliği diğer mühendislik dallarından farklı bir yapıya  ve düşünce sistemine sahiptir. En önemli fark endüstri mühendisliğinin  parçayı değil bütünü gözönüne alarak çalışması, sistemin bütünüyle  ilgilenmesidir. İkinci önemli fark ise her türlü uygulamada insan  faktörünü dikkate almasıdır. Bu sebeplerden dolayı temel doğa  bilimleriyle olan ilişkisinin yanında sosyal bilimlerle de iç içedir.
  
Kaynak: Endüstri Mühendisi Erkan Okur | Endüstri Mühendisliği Makaleleri
  
Etiketler: Endüstri Mühendisi, Endüstri Mühendisliği, Endüstri Mühendisliği Nedir ?, Erkan Okur, erkanokur.com        
Tek sayfa
  • Yeni bir konu açamazsınız
  • Bu konuya cevap yazamazsınız

[Matematik] Olasılık Teorisi - Temel Kavramlar Konuyu Oyla: -----

#1
Kullanıcı çevrimdışı   Sema 

  • Ne Mutlu Türküm Diyene!!
  • Grup: Yönetici
  • Mesaj sayısı: 5.470
  • Kayıt tarihi: 11-Eylül 07
  • Gender:Female
  • Interests:Mustafa Kemal ATATÜRK, Türk Tarihi, Türk Edebiyatı, Türk Kültürü, Ülke Gündemi, Siyaset ve Köşe Yazıları...
Forum İtibarı: 6
Henüz Tanınmıyor



İçeriği Arkadaşlarınla Paylaş

forum

Olasılık Teorisi


Fiziksel ve sosyal bir olgunun kesin olarak belirlenmesi olanaksız da olsa, bu tür olgular yeterince gözlendiklerinde belirli bir düzenleri oldukları saptanabilir. Bu düzenin matematiksel ifadesini elde etmek, olguların gerçekleşmesine ilişkin yargılarımızı, önermelerimizi sayılaştırmak olasılık teorisinin sunduğu araçlarla olanaklıdır. Basitçe ifade edersek olasılık, rastlantısal bir olguya ilişkin bir önermenin kesine yada olanaksıza ne kadar yakın olduğunu gösteren bir sayıdır.

‘’0’’ olanaksızı ‘’1’’ ise kesini simgeler. Olasılık, objektif yöntemlerle ve/veya sübjektif süreçte hesaplanabilir. Bu büyük ölçüde ilgilenilen olayın niteliğine ve dolayısıyla baş vuracağımız olasılık tanımına bağlı olacaktır. Olasılığın 3 temel tanımını görmeden önce, bu tanımlarda ortak kullanılan temel kavramları ele alalım.

TEMEL KAVRAMLAR

Rastlantısal Deney ve Rastlantısal Deneme:

Raslantısal deney ya da kısaca deney, sonucu kesin olarak bilinmeyen olgulara ilişkin gözlem yapma ya da veri toplama süreci olarak tanımlanabilir. Örneğin hilesiz bir para 3 kez atılırsa kaç kez tura geleceğini, bir fabrikada üretilen makine parçalarının defoluluk yüzdesini tahmin etmek amacıyla çekilecek 40 adet makine parçasının kaç tanesinin defolu olacağını önceden bilemeyiz. Öyleyse madeni para 3 kez atılıp, kaç kez tura geldiği sayıldığında ya da 40 adet makine parçası kontrol edildiğinde birer rastlantısal deney yapılmış olur.




Eklenen Dosya  Olas_l_k_Teorisi.doc (75,5K)
İndirme sayısı: 59



1 Kullanıcı bu konuyu okuyor
0 üye, 1 misafir ve 0 gizli üye



Toplam 10 kullanıcı bu konuyu okudu.

0

#2
Kullanıcı çevrimdışı   Hale 

  • Hayat nefeslerle sınırlı, sevgilerle sonsuzdur.
  • Grup: Yönetici
  • Mesaj sayısı: 40.139
  • Kayıt tarihi: 11-Eylül 07
  • Gender:Female
  • Location:İstanbul
  • Interests:Mustafa Kemal ATATÜRK, Türk Tarihi, Türk Dili, Türk Edebiyatı, Türk Kültürü.
Forum İtibarı: 240
Mükemmel
Otel ve Pansiyon Rehberiniz Otel, Pansiyon, Tatil, Gezi, Seyahat ve Konaklama Rehberiniz Bütçenize uygun, keyifli bir tatil için size gezi, seyahat ve konaklama tavsiyeleri: Otel Tanıtımları, Pansiyon Tanıtımları, Tatil Tavsiyeleri, Konaklama Tavsiyeleri, Ülke Tanıtımları, Seyahat Alternatifleri, Şehir Tanıtımları, Tarihi Eserler, Antik Kentler


Olasılık Kuramında Bağımsızlık - Mutlak Bağımsız



Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir.


Örneğin;

• Bir zarın ilk atışta 6 gelmesi olayı ile ikinci atışta 6 gelmesi olayı bağımsızdır.
• Öte yandan, bir zarın ilk atışta 6 gelmesi olayı ilk iki atış sonunda elde edilen sayılar toplamının 8 olması olayına bağlıdır.
• Bir kart destesinden seçilen ilk kartın kırmızı olması olayı ile ikinci kartın aynı renkte olması olayı bağımsızdır (kart seçimi yapıldıktan sonra deste ilk haline getiriliyorsa). Ne var ki, seçilen kartın desteye geri konulmaması durumunda bu iki olay bağımlıdır.

Benzer biçimde, iki rassal değişkenin bağımsız oluşu bu değişkenlerden birinin değerinin diğerinden önce gözlenmemiş oluşuna bağlıdır. Bağımsızlık kavramı ikiden fazla olay ya da rassal değişken barındıran durumlara da uygulanabilmektedir.

"Bağımsız" terimi zaman zaman "istatistiksel olarak bağımsız", "sınırdan bağımsız" ya da "mutlak bağımsız" olarak da kullanılmaktadır.


Bağımsız olaylar

Bağımsızlık şu biçimde tanımlanabilir:
A ve B olayları ancak ve ancak

Pr(A ∩ B) = Pr(A)Pr(B)

koşulu sağlanıyorsa bağımsızdırlar. Burada A ∩ B, A ve B'nin kesişimini (A ve B olaylarının birlikte gerçekleştiği durumu) göstermektedir.

Daha genel anlamda, bir olay dizisi bu dizinin herhangi bir sonlu altkümesinin



forum


koşulunu sağlaması durumunda karşılıklı bağımsızdır. Bu olgu bağımsız olaylar için çarpım kuralı olarak adlandırılmaktadır.

A ve B olayları bağımsız ise, B olayının gerçekleşmiş olduğu bilinmek üzere A'nın koşullu olasılığı bu olayın koşulsuz olasılığına eşittir.



forum


Tüm bunlara karşın, bu ifadelerin bağımsızlık kavramının tam tanımını oluşturduğu söylenemez. Bunun nedeni, ifadede yer alan A ve B olaylarının yerlerinin değiştirilemeyecek oluşu ve bu tanımın olasılığın 0 olduğu durumlarda geçersiz kalmasıdır.

B'nin gerçekleşmiş olduğu bilinmek üzere A'nın koşullu olasılığı



forum


(Pr(B) ≠ 0 olduğu sürece) biçiminde tanımlanmaktadır.



forum


iken bu ifade


forum


olarak da yazılabilir.

Burada sözü edilen bağımsızlık kavramı konuşma dilindeki karşılığından farklı bir anlam taşımaktadır. Örneğin, bir olayın kendinden bağımsız olması ancak ve ancak



forum


koşulunun sağlanması durumunda gerçekleşebilir. Başka bir deyişle, bir olay ya da onun tümleyeni neredeyse kesin olarak gerçekleşiyorsa bu olay kendinden bağımsızdır.

Bağımsız rassal değişkenler

X gerçel değerli bir rassal değişken ve a bir sayı olmak üzere, {X ≤ a} olayı X'in a'dan küçük ya da ona eşit olduğu gözlemlerin oluşturduğu küme olarak tanımlanmaktadır.

X ve Y rassal değişkenleri ancak ve ancak {X ≤ a} ve {Y ≤ b} olaylarının bağımsız olması durumunda bağımsızdırlar. Benzer biçimde, rastgele seçilmiş değişkenlerin oluşturduğu bir kümenin bağımsız oluşu herhangi bir sonlu X1, …, Xn yığını ve a1, …, an sayı dizisi için {X1 ≤ a1}, …, {Xn ≤ an} olaylarının bağımsız olmasına bağlıdır.

Bir yığından seçilen herhangi iki rassal değişken bağımsız ise bu değişkenlerin karşılıklı bağımsızlıkları da güvence altındadır. Bu olgu parçalı bağımsızlık olarak adlandırılmaktadır.
X ve Y bağımsız ise, E beklenti işleci

E[X Y] = E[X] E[Y]

koşulunu sağlar. Varyans için

var(X + Y) = var(X) + var(Y)

eşitliği yazılabilirken kovaryans cov(X,Y) sıfıra eşittir. Bu ifadenin tersi ("iki rassal değişkenin kovaryansı 0 ise bu değişkenler bağımsızdırlar" önermesi) doğru değildir.

Bunlara ek olarak, iki tane X ve Y rassal değişkeni, FX(x) ve FY(y) dağılım fonksiyonları ve fX(x) ve fY(y) olasılık yoğunlukları gösteriyorlarsa, bu iki rassal değişkenin birbirinden bağımsız olmaları için, bileşik rassal değişken (X,Y) nin şu ortak dağılımı olması gerekir:

FX,Y(x,y) = FX(x)FY(y)

ya da buna eşit olarak

fX,Y(x,y) = fX(x)fY(y)

ortak yoğunluk göstermelidir.

İki rassal değişkenden daha fazla sayıda rassal değişkenler olma halinde bağımsızlık da daha genel olarak buna benzer ifadeler ile karakterize edilirler.

Koşullu bağımsız rassal değişkenler

Sezgi ile ele alınırsa, iki rassal değişken X ve Y nin birbirinden koşullu bağımsız olmaları için, bir Z verilirse ve eğer Z değeri bilinirse, Y değerini bilmenin X hakkında bilgimize hiçbirsey eklememesi gerekir. Örnegin, altlarından Z miktarına bağlılıkları olduğu kabul edilen, X ve Y değişkeni ölçümleri birbirinden bağımsız değildir; ama (iki olçümdeki yapılan hatalar herhangi bir şekilde birbirine ilişkili değilse) 'bu iki değişken, verilmiş bir Z şartına bağlı koşutlu değişkenlerdir.' Koşullu bağımsızlık kavramının daha formel bir tanımlaması koşullu dağılım kavramına dayandırılır. Eğer X, Y ve Z ayrık rassal değişken iseler, o halde X ve Y değişkenlerinin Z verilmişine koşullu bağımsız olmaları için şart şudur:

Her x, y ve z için P(Z ≤ z) > 0 olursa



forum


Diğer taraftan, eğer X, Y ve Z sürekli rassal değişken iseler ve p ortak olasılık yoğunluk fonksiyonu bulunmakta ise; o halde X ve Y değişkenlerinin Z verilmişine koşullu bağımsız olmaları için şart şudur:

Her x, y ve z gerçel sayılar için pZ(z) > 0 olursa



forum


Bu demektir ki Y ve Z verilirse X için koşullu dağılım, sadece Z için dağılımın aynıdır. Sürekli halde de koşutlu olasılık yoğunluk fonksiyonları için de bir benzer denklem verilebilir.

Olasılık bir çeşit hiç verilmiş olay olmayan koşutlu olasılık olduğu için, bağımsızlık koşutlu bağımsızlığın özel bir hali olarak görülebilir.

0


Tek sayfa
  • Yeni bir konu açamazsınız
  • Bu konuya cevap yazamazsınız


"[Matematik] Olasılık Teorisi - Temel Kavramlar" İçin Anahtar Kelimeler (Keywords)
Konuyu ziyaret eden ziyaretçilerimizin Google arama motorunda kullandıkları anahtar kelimeleri içermektedir.

olasılığın temel kavramları - Google'da Ara (32), olasılığın temel kavramları - Google'da Ara (25), olasılığın temel kavramları - Google'da Ara (22), olasılığın temel kavramları - Google'da Ara (14), Google (14), OLASILIĞIN TEMEL KAVRAMLARI - Google'da Ara (9), olasılığın temel kavramları - Google'da Ara (9), olasılık - Google'da Ara (9), olasılığın temel kavramları - Google'da Ara (7), olasılığın temel kavramları - Google'da Ara (7), olasılığın temel kavramları - Google'da Ara (7), olasılık kavramı nedir - Google Search (6), olasılığın temel kavramları - Google'da Ara (6), olasılığın temel kavramları - Google'da Ara (6), olasılık kavramı nedir - Google'da Ara (6), olasılığın temel kavramları - Google'da Ara (5), olasılık temel kavramları - Google'da Ara (5), olasılığın temel kavramları - Google'da Ara (5), olasılığın temel kavramları - Google'da Ara (5), olasılığın temel kavramları - Google'da Ara (5), olasılığın temel kavramları - Google'da Ara (4), olasılığın temel kavramları - Google'da Ara (4), Web Search Results (4), olasılıgın temel kavramları - Google'da Ara (4), olasılığın temel kavramları - Google'da Ara (4), olasılığın temel kavramları nelerdir - Google'da Ara (4), olasılığın temel kavramları - Google'da Ara (4), olasılığın temel kavramları nelerdir - Google'da Ara (3), olasılık kavramı nasıl çıkmıştır - Google'da Ara (3), olasılığın temel kavramları - Google'da Ara (3), Web Search Results (3), olasılılığın temel kavramlar - Google'da Ara (3), olasılığın temel kavramları - Google'da Ara (3), olasılığın temel kavramları - Google'da Ara (3), olasılığın temel kavramları - Google'da Ara (3), olasılık kavramları - Google'da Ara (3), olasılığın temel kavramları - Google'da Ara (3), olasılığın temel kavramları nedir - Google'da Ara (3), olasılıgın temel kavramları - Google'da Ara (3), olasılığın kavramları - Google Search (3), olasılık kavramları nelerdir - Google'da Ara (3), matematikte olasılık kavramları nedir - Google'da Ara (3), olasılığın kavramları nelerdir - Google'da Ara (3), olasılık - Google'da Ara (3), olasılık kavramı nedir - Google'da Ara (3), olasılığın kullanım alanları - Google'da Ara (3), olasılığın temel kavramları - Google\'da Ara (2), OLASILIĞIN TEMEL KAVRAMLARI - Bing (1), olasılığın temel kavramları - Bing (1), olasılık ile ilgili slogan - Bing (1), olasılık ile ilgili slogan - Bing (1), olasılık ile ilgili slogan - Bing (1), Olasılık Kavramı - Bing (1), Arama V9 (1), olasılığın gelişim süreci ve tarihi matematik - Bing (1), (1) matematik kavramları nelerdir - Web Search Results (1), olasılığın temel kavramları - Google\'da Ara (1), olasılığın temel kavramları - Google\'da Ara (1), olasılığın temel kavramları ve olasılık hesaplama - Google\'da Ara (1), olasılığın temel kavramları - Google\'da Ara (1), olasılık yoğunluk fonksiyonu soruları - Bing (1), temel olasılık kavramları - Bing (1),