İçeriğe git

Welcome to Kadim Dostlar ™ Forum
Register now to gain access to all of our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, post status updates, manage your profile and so much more. This message will be removed once you have signed in.
Login to Account Create an Account
Resim

[Matematik] İkinci ve Üçüncü Dereceden Denklemler - Çarpanlara ve Köklerine Ayırma

* * * * * 1 Oy Kullanılmış

  • Yanıtlamak için lütfen giriş yapın
Bu konuya henüz cevap yazılmadı

#1
Erkan

Erkan

    Sanki Çok Önemli Kararlar Alacak Gibiyim Ama, Du Bakalım ?

  • Yönetici
  • 5.701 İleti
  • Gender:Male
A. TANIM

a, b, c gerçel sayı ve a ¹ 0 olmak üzere,

ax2 + bx + c = 0

biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir.

Bu açık önermeyi doğrulayan x sayılarına denklemin kökleri; tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi; çözüm kümesini bulmak için yapılan işlemlere denklem çözme; a, b, c sayılarına da denklemin kat sayıları denir.

B. İKİNCİ DERECE DENKLEMİN ÇÖZÜM KÜMESİNİN BULUNUŞU

1. Çarpanlara Ayırma Yöntemi

ax2 + bx + c = 0 denklemi f(x) . g(x) = 0

biçiminde yazılabiliyorsa

f(x) = 0 veya g(x) = 0 olup çözüm kümesi;

Ç = {x | x, f(x) = 0 veya Q(x) = 0 denklemini sağlar} olur.

2. Diskiriminant (D) Yöntemi

ax2 + bx + c = 0 denklemi a ¹ 0 ve

D = b2 – 4ac ise, çözüm kümesi

Resmi ekleyen ax2 + bx + c = 0

denkleminde, D = b2 – 4ac olsun.

a) D > 0 ise, denklemin farklı iki gerçel kökü vardır.

Bu kökleri, Resmi ekleyen B) D < 0 ise, denklemin gerçel kökü yoktur.

c) D = 0 ise, denklemin eşit iki gerçel kökü vardır.

Bu kökler, Resmi ekleyen

Denklemin bu köklerine; eşit iki kök, çakışık kök ya da çift katlı kök denir.

Ü ax2 + bx + c = 0

denkleminin kökleri simetrik ise,

1) b = 0 ve a ¹ 0 dır.

2) Simetrik kökleri gerçel ise,

b = 0, a ¹ 0 ve a . c £ 0 dır.

C. İKİNCİ DERECE DENKLEMİN KÖKLERİ İLE KATSAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri

x1 ve x2 ise,

Resmi ekleyen
Resmi ekleyen

D. KÖKLERİ VERİLEN İKİNCİ DERECEDEN DENKLEMİN YAZILMASI

Kökleri x1 ve x2 olan ikinci dereceden denklem;

(x – x1) (x – x2) = 0 dır. Bu ifade düzenlenirse,

x2 – (x1 + x2)x + x1x2 = 0 olur.

Ü ax2 + bx + c = 0 ... (1) denkleminin kökleri x1 ve x2 olsun. Kökleri mx1 + n ve

mx2 + n olan ikinci dereceden denklem, (1) denkleminde x yerineResmi ekleyenyazılarak bulunur.

Ü ax2 + bx + c = 0 ve dx2 + ex + f = 0 denklemlerinin çözüm kümeleri aynı ise,

Resmi ekleyen

Ü ax2 + bx + c = 0 ve dx2 + ex + f = 0

denklemlerinin sadece birer kökleri eşit ise,

ax2 + bx + c = dx2 + ex + f

(a – d)x2 + (b – e)x + c – f = 0 dır.

Bu denklemin kökü verilen iki denklemi de sağlar.

ÜÇÜNCÜ DERECEDEN DENKLEMLER

A. TANIM

a ¹ 0 olmak üzere, ax3 + bx2 + cx + d = 0 biçimindeki denklemlere üçüncü dereceden bir bilinmeyenli denklemler denir.

B. ÜÇÜNCÜ DERECEDEN DENKLEMİN KÖKLERİ İLE KATSAYILARI ARASINDAKİ BAĞINTILAR

a ¹ 0 ve ax3 + bx2 + cx + d = 0 denkleminin kökleri x1, x2 ve x3 olsun. Buna göre,

Resmi ekleyen
Resmi ekleyen

C. KÖKLERİ VERİLEN ÜÇÜNCÜ DERECE DENKLEMİN YAZILMASI

Kökleri x1, x2 ve x3 olan üçüncü derece denklem

(x – x1) (x – x2) (x – x3) = 0 dır.

Bu denklem düzenlenirse,

x3 – (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x – x1x2x3 = 0

olur.

Ü ax3 + bx2 + cx + d = 0 denkleminin kökleri

x1, x2, x3 olsun.

1) Bu kökler aritmetik dizi oluşturuyorsa,

x1 + x3 = 2x2 dir.

2) Bu kökler geometrik dizi oluşturuyorsa,

3) Bu kökler hem aritmetik hem de geometrik dizi oluşturuyorsa,

x1 = x2 = x3 tür.

n, 1 den büyük pozitif tam sayı olmak üzere,

anxn + an – 1xn – 1 + ... + a1x + a0 = 0

denkleminin;

Kökleri toplamı :Resmi ekleyen

Kökleri çarpımı :Resmi ekleyen






0 Kullanıcı konuyu okuyor

0 Kullanıcı, 0 Misafir, 0 Kayıtsız kullanıcı