İçeriğe git

Welcome to Kadim Dostlar ™ Forum
Register now to gain access to all of our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, post status updates, manage your profile and so much more. This message will be removed once you have signed in.
Login to Account Create an Account
Resim

[Matematik] Parabol - Tanım, Tepe Noktası, Kestiği Noktalar, Denklem Yazılması

- - - - -

  • Yanıtlamak için lütfen giriş yapın
Bu konuya 3 yanıt gönderildi

#1
Erkan

Erkan

    Sanki Çok Önemli Kararlar Alacak Gibiyim Ama, Du Bakalım ?

  • Yönetici
  • 5.701 İleti
  • Gender:Male
A. TANIM

a ¹ 0 ve a, b, c Î IR olmak üzere, f : IR ® IR tanımlanan f(x) = ax2 + bx + c biçimindeki fonksiyonlara ikinci dereceden bir değişkenli fonksiyonlar denir.

Resmi ekleyen İkinci dereceden fonksiyonun analitik düzlemdeki görüntüsüne parabol denir.

Parabol, düzgün tel parça-sının uçlarından tutularak bükülmesiyle oluşan, yandaki gibi kolları yukarıya doğru ya da aşağıya doğru olan bir eğridir.



B. PARABOLÜN TEPE NOKTASI

1) f(x) = ax2 + bx + c fonksiyonunun tepe noktası

T(r, k) olmak üzere,

Resmi ekleyen

Ü Parabol Resmi ekleyen doğrusuna göre simetriktir.

Resmi ekleyen

Resmi ekleyendoğrusu parabolün simetri eksenidir.



y = a(x – r)2 + k fonksiyonunun grafiğinin tepe noktası T(r, k) dır. C. GRAFİĞİN EKSENLERİ KESTİĞİ NOKTALAR

Parabolün Ox eksenini kestiği noktalar A ve B, Oy eksenini kestiği nokta C olsun.

ax2 + bx + c = 0 ın kökleri x1 ve x2 ise A(x1, 0), B(x2, 0), C(0, c) dir.

Resmi ekleyen

Ü ax2 + bx + c = 0 denkleminde

  • D = b2 – 4ac > 0 ise, parabol Ox eksenini farklı iki noktada keser.
  • D = b2 – 4ac < 0 ise, parabol Ox eksenini kesmez.
  • D = b2 – 4ac = 0 ise, parabol Ox eksenine teğettir.

D. x2 NİN KATSAYISI OLAN a NIN İŞARETİ

1) Resmi ekleyen a>0 ise parabolün kolları yukarı doğru olup,f(x),in en küçük değeri tepe noktasının ortinatı olan k dır. 2) a < 0 ise, parabolün kolları aşağı doğru olup, f(x) in en büyük değeri tepe noktası-nın ordinatı olan k dır.

Resmi ekleyen .a>0 ise parabolün kolları aşağı doğru olup f(fx) in en büyük değeri tepe noktasının ortinatı olan k dır. 3) |a| büyüdükçe kollar daralır. Buna göre, yandaki parabollere göre, f deki x2 nin katsayısı, g deki x2 nin katsayısından büyüktür.

Resmi ekleyen |a| büyüdükçe kollar daralır. Buna göre , yandaki parabollere göre ,f deki x2 nin katsayısı g deki x2 nin katsayısından büyüktür f(x) = ax2 + bx + c fonksiyonunun grafiğini çizmek için,

1) Fonksiyonun tepe noktası bulunur.

2) Fonksiyonun eksenleri kestiği noktalar bulunur.

3) a nın işaretine bakılarak parabolün kollarının yönü belirlenir.

E. GRAFİĞİ VERİLEN PARABOLÜN DENKLEMİNİN YAZILMASI

1. Parabolün Ox Eksenini Kestiği Noktalar Biliniyorsa

Resmi ekleyen

y = f(x) = a(x – x1) (x – x2) ... (1) dir.

Burada a değerini bulmak için, parabol üzerindeki herhangi bir noktanın değerleri (1) de yazılır.

2. Parabolün Tepe Noktası Biliniyorsa

Resmi ekleyen

y = f(x) = a(x – r)2 + k ... (1) dir.

Burada a değerini bulmak için, parabol üzerindeki herhangi bir noktanın değerleri (1) de yazılır.

3. Parabolün Geçtiği Üç Nokta Biliniyorsa

Resmi ekleyen

y1 = ax12 + bx1 + c ... (1)

y2 = ax22 + bx2 + c ... (2)

y3 = ax32 + bx3 + c ... (3)

Bu üç denklemi ortak çözerek a, b, c yi buluruz.

F. PARABOL İLE DOĞRUNUN DÜZLEMDEKİ DURUMU

y = f(x) = ax2 + bx + c parabolü ile y = g(x) = mx + n doğrusunu ortak çözelim.

f(x) = g(x)

ax2 + bx + c = mx + n

ax2 + (b – m)x + c – n = 0 ... (*)

(*) denkleminin kökleri (varsa) doğru ile parabolün kesiştiği noktaların apsisleridir.

Buna göre, (*) denkleminde;

  • D > 0 ise, parabol doğruyu farklı iki noktada keser.
  • D< 0 ise, parabol ile doğru kesişmez.
  • D = 0 ise, parabol doğruya teğettir.
Ü y = ax2 + bx + c parabolü ile y = dx2 + ex + f parabolünün düzlemdeki durumu incelenirken yukarıdakine benzer biçimde işlemler yapılır.


#2
singlewolf

singlewolf

    KD ™ Yeni Tanıdık

  • Üye
  • 2 İleti
Teşekkürler

#3
singlewolf

singlewolf

    KD ™ Yeni Tanıdık

  • Üye
  • 2 İleti
selam
konudaki resimleri goremiyorum neden acaba? yardımcı olursanız sevinirim. Emeginize saglık

#4
ugur123

ugur123

    KD ™ Yeni Tanıdık

  • Üye
  • 1 İleti
elinize sağlık

Konu Hale tarafından 23 Nisan 2009 Perşembe - 13:05 tarih ve saatinde düzenlenmiştir





0 Kullanıcı konuyu okuyor

0 Kullanıcı, 0 Misafir, 0 Kayıtsız kullanıcı